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a b s t r a c t

Urban form, which refers to the spatial configuration of urban land use within a metropolitan area, has
profound influences on energy consumption of a city. Landscape metrics are frequently used to quantify
urban land use patterns, but there are limited studies reporting the implications of different urban land
use patterns on energy consumption. In this study, we attempt to empirically estimate the relationships
between urban land use patterns and energy consumption. Five cities of the Pearl River Delta (PRD)
in south China, namely Guangzhou, Dongguan, Shenzhen, Foshan and Zhongshan, are selected as the
study areas. PRD is becoming an emerging megalopolis and important manufacturing base in the world.
However, the rapid and unregulated urbanization process as well as the extensive and inefficient use of
energy has caused a series of problems. In this study, remote sensing images during 2005–2008 were
used to reveal the dynamic distribution of urban land use based on land use classification. The urban land
use patterns were then quantified using a set of landscape metrics, which further serve as explanatory
variables in the estimation. The panel data analysis is implemented to estimate the relationship between
urban land use patterns and energy consumption. Briefly, it is found that: (1) Urban size is positively
correlated with energy consumption; (2) fragmentation/irregularity of urban land use patterns is posi-
tively correlated with energy consumption; (3) The dominance of the largest urban patch is negatively
correlated with energy consumption.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Urban form refers to the spatial configuration of urban land
use within a metropolitan area (Anderson, 1996). Different urban
forms may give rise to diverse social, ecological, and environmen-
tal consequences (Camagni, Gibelli, & Rigamonti, 2002; Holden,
2004; Wachs, 1993). Many studies revolve around the topic of sus-
tainable urban forms (Breheny, 1992; Frey, 1999; Jabareen, 2006;
Williams, Burton, & Jenks, 2000). Some researchers believe that
compact urban forms (Jenks & Burgess, 2000), characterized by high
density, mixed land use, pedestrian-oriented habitation and energy
efficiency (Chen, Jia, & Lau, 2008), are more desirable for retaining
the sustainability of development (Thomas & Cousins, 1996). There-
fore, the compact urban forms become increasingly promoted by
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urban planners. Simulation techniques, such as cellular automata
(CA), are adopted by researchers to illustrate the planning scenarios
of compact development. For example, Li and Yeh (2000) proposed
a constrained CA model to simulate compact urban forms of Dong-
guan; Ward, Murray, and Phinn (2003) integrated CA model with
spatial optimization to generate the development scenario of high
density and compact growth in south east Queensland, Australia.
However, there are also evidences that challenge the superiority of
compact urban forms. Holden and Norland (2005) indicated that
lower energy consumption may be achieved by decentralized con-
centration. Whether the compact development policy is applicable
for cities in developing countries like China, which inherently has a
large population and high density, still needs further examination
(Chen et al., 2008).

One important facet of the debate over sustainable urban forms
is the relationship between urban forms and energy consumption.
The influence of urban forms on energy consumption is profound,
albeit not dominant (Anderson, 1996). Several aspects of urban
forms can significantly affect urban energy consumption, such as
the relationship between new developments and existing towns,
the size, shape and function of new urban development, the mix-
ing of land uses, travel patterns (Owens, 1986). Banister, Watson,
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Fig. 1. Location of the study area.

and Wood (1997) tried to reflect the links between energy use in
transport and urban forms, based on six case studies in United King-
dom and Netherland. Factors significantly affecting urban energy
consumption were identified, such as density, employment and car
ownership. But the data involved were coarse and the inconsistency
of variables prevented the comparative analysis of different cities.
In another empirical study on three cities in Netherland, Dieleman,
Dijst, and Burghouwt (2002) found that the dependency of private
cars related to factors of car ownership, household type, abun-
dance of public transport and local residential environments. Ratti,
Baker, and Steemers (2005) devised several algorithms to reflect
the effects of urban texture on the energy consumption of buildings,
using digital elevation models (DEMs).

Different from the studies mentioned above, we attempt to
empirically estimate the relationship between urban forms and
energy consumption from the perspective of spatial patterns
of urban land use. With the advances in remote sensing and
geographical information systems (GIS), extensive studies have
demonstrated the use of landscape metrics to quantify the spatial
characteristics (Alberti & Waddell, 2000; Luck & Wu, 2002; Seto &
Fragkias, 2005; Xie, Yu, Bai, & Xing, 2006) and the change of urban
land use patterns (Dietzel, Oguz, Hemphill, Clarke, & Gazulis, 2005;
Herold, Scepan, & Clarke, 2002; Liu et al., 2010). Landscape met-
rics are also considered very useful in assisting urban planning.
Botequilha Leitão and Ahern (2002) developed a conceptual frame-
work for sustainable landscape planning, and the landscape metrics
were utilized in order to address the ecological concerns. To our
knowledge, less attention has been paid to the link between urban
landscape and energy consumption. Especially, such studies have
not been reported for the rapidly growing cities in China.

In this study, five cities of the Pearl River Delta (PRD) in
south China, namely Guangzhou, Dongguan, Shenzhen, Foshan
and Zhongshan, are selected as the study area. As an emerging
megalopolis, PRD becomes an important economic region and man-
ufacturing base in the world. Despite its economic success, the
rapid and unregulated process of urban growth has resulted in a
series of environmental problems (Li & Yeh, 2004; Seto et al., 2002).
Meanwhile, the extensive and inefficient use of energy causes a
serious degradation of environment (Fang, Chan, & Yao, 2009; Guo
et al., 2006). This study attempts to reveal the relationship between

urban land use patterns and energy consumption in PRD. Urban
land use patterns are retrieved from multi-temporal images dur-
ing 2005–2008. Afterward the spatial patterns of urban land use are
quantified by a set of landscape metrics, which are further taken as
the explanatory variables for energy consumption. The panel data
analysis is then implemented to estimate the relationship between
urban land use patterns and energy consumption.

2. Study area and data

2.1. The Pearl River Delta

The Pearl River Delta is situated in the central part of Guangdong
province in south China. This region is mainly dedicated to agricul-
tural production until the economic reform started in 1978. Since
then the region has attracted large amounts of foreign direct invest-
ments (FDI), which is the critical support to the take-off of regional
economy. The continuing development of manufacturing plants
and joint ventures demands a large quantity of land. As a result,
a lot of land was converted from agricultural use to infrastructure,
real property or industrial uses. The unregulated urbanization pro-
cess gave rise to a series of problems, e.g. the loss of large amount
of fertile agricultural land (Li & Yeh, 2004; Seto et al., 2002). Many
researchers were therefore devoted to developing effective meth-
ods for monitoring and quantifying the fast changing landscapes of
the PRD (Seto & Fragkias, 2005; Sui & Zeng, 2001).

The economic growth of the region requires a vast volume of
natural resources, especially energy. Although the Pearl River Delta
only occupies 20% of the territory of Guangdong province, it con-
sumes 67% of the coal and 85% of the oil that are consumed by
the entire province (Shao, Tang, Zhang, & Li, 2006). Moreover, the
efficiency of energy consumption is very low compared with other
developed regions in China (like the Yangtze River Delta), not to
mention the industrialized countries like US or Japan (Fang et al.,
2009). The air quality here seriously deteriorates as a result of such
extensive and inefficient use of energy (Fang et al., 2009; Guo et al.,
2006). Thus, substantial efforts should be paid to reduce the energy
consumption and improve the environmental quality.

In this study, we attempt to analyze the relationship between
spatial patterns of urban land use and energy consumption. Five
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Table 1
Population, GDP, the number of cars, the proportion of the secondary industry and the tertiary industry of Dongguan, Foshan, Guangzhou, Shenzhen and Zhongshan in 2005
and 2008.

Dongguan Foshan Guangzhou Shenzhen Zhongshan Total

Population (million) 2005 6.56 5.80 9.50 8.28 2.43 32.57
2008 6.95 5.95 10.18 8.76 2.52 33.32

GDP (103 bellion yuan) 2005 0.22 0.24 0.52 0.50 0.10 1.56
2008 0.37 0.43 0.82 0.78 0.14 2.55

Number of private cars (million) 2006 0.36 0.39 0.62 0.64 0.16 2.18
2008 0.54 0.55 0.87 0.93 0.22 3.13

Proportion of the secondary industry (%) 2005 56.7 60.4 39.7 53.2 61.3 50.76
2008 52.8 65.6 38.9 48.9 60.4 49.72

Proportion of the tertiary industry (%) 2005 42.4 36.4 57.8 46.6 35.2 47.53
2008 46.9 32.2 59.0 51.0 36.5 49.00

cities within this region are selected, including Guangzhou, Shen-
zhen, Foshan, Dongguan and Zhongshan (Fig. 1). Table 1 lists the
selected statistics of these five cities in 2005 and 2008, including
population, GDP, the number of cars, the proportion of the sec-
ondary industry and the tertiary industry. These five cities are the
largest cities in the PRD. The sum of the population of these five
cities was 32.57 million in 2005, and further increased into 33.32
million in 2009, which accounts 75.57% of PRD’s total population
and 36.00% the province’s total population. Also, these five cities
are the most developed cities in the PRD and Guangdong province.
The sum of the GDP of these five cities was 1.56 × 103 bellion
yuan in 2005, and rapidly increased into 2.55 × 103 bellion yuan
in 2008. This accounts 85.62% of PRD’s total GDP and 67.96% of the
province’s total GDP. Recently the PRD has the highest GDP per
capita among several most developed regions in China (Shao et al.,
2006). The increase of personal wealth stimulates the possession
of private cars. The sum of private cars was 2.18 million in the five
cities in 2006, and grew into 3.13 million in 2008, with the annual
growth rate of 19.87% which was even higher than that of GDP
(17.79%).

Besides the rapid growth of economic size, significant changes
are also witnessed in the economic structures of these five cities.
It is found that the proportion of the secondary industry gradu-
ally decreases in some of these cities in recent years. For example,
the proportion of the secondary industry in Donggguan and Shen-
zhen were 56.7% and 53.2% respectively in 2005; but they rapidly
declined into 48.4% and 46.7% in 2008. While for Foshan and Zhong-
shan, their proportion of the secondary industry were stilled as high
as 65.6% and 60.4% in 2008. The economic structure of Guangzhou
is most distinct from the other four cities. The proportion of sec-
ondary industry was only 37.2% in Guangzhou while the proportion
of the tertiary industry was 60.9% in 2008.

2.2. Data preparation

2.2.1. Approximating the energy consumption
It is very difficult to obtain the precise data of energy consump-

tion. In general, the energy data in other studies are collected in
three major ways: (1) collect data from previous studies. For exam-
ple, in (Banister et al., 1997) the comprehensive analysis of the
relationship between urban forms and energy consumption over
six cities was on the basis of data collected from a sample of pre-
vious studies. Similarly, Mindali, Raveh, and Salomon (2004) cited
the data in (Newman, Newman, & Kenworthy, 1989). (2) Use the
surveyed data. Examples can be found in (Banister, 1996; Dieleman
et al., 2002). (3) Approximate energy consumption by related statis-
tical data. This is a useful method for those study areas like China
that energy consumption data are not rich. For example, Dhakal
(2009) illustrated how to estimate the total amount of energy con-
sumption of a city using the statistics of energy consumption per
unit Gross Regional Product (GRP).

We attempt to estimate the relationship between energy con-
sumption and urban forms, thus we follow Dhakal’s approach in
this study. We use two statistics from Guangdong Statistical Year
Book (http://www.gdstats.gov.cn/tjnj/ml c.htm) to approximate
the energy consumption of the study area. Urban energy consump-
tion is separated into two major sources in Guangdong Statistical
Year Book: production and living. At city level, Guangdong Statis-
tical Year Book provides the energy consumption per unit gross
domestic production (GDP) (t. of Standard Coal Equivalent/104

Yuan) during 2005–2008, here denoted as eGDP; and the annual
average energy consumption for living per capita as well (kg.
of SCE), denoted as eLiving. These two statistics represent energy
intensity in production and living respectively. Specifically, the
eGDP refers to the energy intensity in material production and
non-material production; while eLiving refers to a resident’s aver-
age yearly energy consumption that comes from living activities.
So energy uses by sectors like industrial production and logis-
tics are considered in eGDP; while energy uses by using household
appliances are accounted in eLiving. There might be the risk of
double counting when data comes from different statistics. How-
ever, based on the definition of statistics, eGDP and eLiving, we think
the problem of double counting is quite unlikely here. Although
the detailed composition of energy consumption sectors (such as
industry, transportation, residential) is also very important to the
analysis, we cannot find such statistical data at city level for the
selected five cities and hence didn’t involve this variable in this
study. The two statistics, eGDP and eLiving, are used to estimate the
total energy consumption, which is considered as the dependent
variable in estimation of the relationship between urban forms and
energy consumption:

E = eGDP × V + eLiving × P (1)

where V represents the amount of GDP and P is the size of popula-
tion of a city.

2.2.2. Quantifying urban forms by combining remote sensing
data and landscape metrics

In this study, the urban forms of the five cities, Guangzhou, Shen-
zhen, Foshan, Dongguan and Zhongshan, are quantified using a set
of landscape metrics. Landscape metrics are developed from infor-
mation theory and fractal geometry (Mandelbrot, 1983; Weaver &
Shannon, 1963) and commonly used in landscape ecology (Herold,
Couclelis, & Clarke, 2005). They can be used to quantify spatial
heterogeneity and its changes within a landscape. Herold et al.
(2005) have made comments on applying such metrics in the con-
text of urban landscapes. They summarized several advantages of
using landscape metrics for urban analysis: (1) improving the rep-
resentation of heterogeneous urban landscapes; (2) bridging the
gap between urban land use patterns and the governing processes;
(3) facilitating the analysis of impacts of urban development on
the surrounding environment; and so on. Besides, they recom-
mended the combination of remote sensing and landscape metrics
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to improve the modeling of urban land use, because “remote sens-
ing can provide the spatially consistent, high-resolution datasets
that are required for the analysis of spatial structure and pat-
tern through spatial metrics” (Herold et al., 2005). We follow such
method in this study that first acquire the spatial distribution of
urban land use from remote sensing images and further use land-
scape metrics to quantify the urban land use patterns.

Multi-temporal Landsat TM5 images acquired in 2005, 2006,
2007, and 2008 were used to obtain the dynamics of urban land use
patterns in the study area. A single scene of Landsat TM image (path
122, row 44) can approximately cover this area (Fig. 1) except that
part of Shenzhen is within the east adjacent scene of image (path
121, row 44). The images were georeferenced to the UTM projection
with the registration error of less than 0.5 pixels. We identified six
land use classes from the images: built-up areas, farm land, forest,
water, fishpond and bare soil. We think such scheme of land use
classes is most appropriate considering the 30 m-resolution of TM
images. In fact, this scheme is very similar in many other studies
using TM images, such as (Seto et al., 2002). Some may be curi-
ous about the classes of water and fishpond, both of which could
have been identified as the same class. Actually, the water class
includes rivers, lakes and reservoirs, which are large and continu-
ous water area. Fishponds are adjacent small pools, which look like
‘dark’ grids (some times irregular) in the space. Therefore it is easy
to differentiate these two classes in the images, especially using
object-based classification methods. Such methods are provided in
the software Definiens Developer 7.0. The classification procedure
contains four steps: image segmentation, sample selection, feature
optimization, and objects classification. First, the image segmen-
tation aggregated similar pixels into objects. Afterward samples
(image object) were selected manually by the user for each land
use class. Before categorizing all objects into given classes, a set
of features should be determined with the objective of maximiz-
ing the distance between one land use class and another. This step
was executed automatically by the software using the tool of Fea-
ture Optimization. Finally, the nearest neighbor classification was
performed based on the selected samples and features. After the
land use classification, the output images were further converted
into binary grids of urban/non-urban for the quantification of urban
forms using landscape metrics. The resolutions of grids are resam-
pled from 30 m to 150 m through the nearest neighbor method in
order to reduce the computation time in subsequent analysis. We
choose the resolution according to the extent of study area and
other literature on this topic, such as (Dietzel et al., 2005). We
admit that the values of the landscape metrics will change once
the resolution is resampled into 150 m, but we think the change
should be consistent among all cities and hence such change may
not significantly affect the analysis results.

The landscape metrics were chosen based on published liter-
ature on this theme (Dietzel et al., 2005; Seto & Fragkias, 2005;
Xie et al., 2006), including total urban class area (CA), number of
urban patches (NP), mean perimeter-area ratio (PARA MN), mean
Euclidean nearest neighbor distance (ENN MN) and largest patch
index (LPI). CA represents the area of a particular class in a land-
scape, thus this metric is equivalent to the area of urban land use
in this study. The unit of CA is transformed from ha into km2.
NP is the total number of urban patches. Here urban patches are
defined as homogenous regions of urban land use (Herold et al.,
2005). In the early phase of urbanization process, especially for
those experiencing rapid urban growth, the value of NP is expected
to increase until in later stage individual urban patches gradually
merge into continuous areas (Seto & Fragkias, 2005). ENN MN (m)
is the average distance between any two nearest neighboring urban
patches. ENN MN can be interpreted as the measure of spatial con-
nection between urban patches. Given the same amount of new
developed urban areas, high values of NP and ENN MN indicate a

fragmented/scattered pattern. PARA MN is the mean value of the
perimeter (m)-area (m2) ratio of urban patches in the landscape,
providing information about the shape of urban patches. The higher
the value of PARA MN is, the lower the overall regularity of the
urban landscape is. LPI (%) means the percentage of landscape occu-
pied by the largest patch. In the context of urban landscape, LPI can
be used to measure the dominance of the largest urban patch.

3. Panel data analysis

The panel data analysis is adopted for estimating the relation-
ship between urban land use patterns and energy consumption.
Panel data analysis is a sort of regression models that can deal with
observations from multiple individuals over multiple periods. Panel
data analysis has more advantages compared with conventional
statistical analysis using only either cross-sectional or time-series
data. For example, more data points can be involved for analysis
so that the degrees of freedom are increased while the collinearity
among explanatory variables are reduced (Hsiao, 2003). Therefore,
the estimation efficiency can be improved by using panel data anal-
ysis. Moreover, spatial heterogeneity and influence not accounted
by explanatory variables may cause the relation to vary among indi-
viduals (Seto & Kaufmann, 2003). This can be solved by varying the
intercepts and/or coefficients in panel data analysis.

The implementation of panel data analysis contains three steps.
The first step is to select a model form because there are different
model forms in panel data analysis. The model form cannot be cho-
sen arbitrarily, but based on the results of F-test. Secondly, if the
test results suggest that intercepts and/or coefficients should not
be constant, the Hausman test is implemented to decide whether
such effects are fixed or random. Finally, the model is estimated
using generalized least squares (GLS) (Hsiao, 2003). The details of
F-test and Hausman test are specified as follows:

The forms of regression model for panel data analysis vary
according to different assumptions. There are three major types
of model form: pooled regression model, variable intercepts and
constant coefficients model, variable intercepts and variable coef-
ficients model. In pooled regression model, both intercepts and
coefficients are held constant for all individuals over the entire
period. The form of pooled regression model can be specified as
Eq. (2):

yit = a + bxit + εit (2)

where i and t are indices for individuals and time; yit and xit repre-
sent the dependent variable and independent variable respectively;
and εit is the error term.

If it is assumed that there are influences not accounted by
explanatory variables and vary among individuals but time invari-
ant, the variable intercepts can be introduced as ai:

yit = ai + bxit + εit (3)

where ai is specified as fixed effects or random effects.
In fixed effects model, ai is a constant for individual i; while in

random effects model, the intercept for individual i is formulated
as a constant plus a random term. Moreover, the coefficients also
can vary among individuals, denoted as bi:

yit = ai + bixit + εit (4)

Similar to the specification of ai, bi can be treated as fixed or ran-
dom effects. Decision of choosing a form among 2, 3 and 4 depends
on the result of F-test by comparing the residual sum of squares
(RSS) of Eqs. (2)–(4) (Hsiao, 2003):

H1 : ˇ1 = ˇ2 = · · · = ˇN
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F1 = (S3 − S1)/[(N − 1)K]
S1/(NT − N(K + 1))

∼F[(N − 1)K, N(T − K − 1)] (5)

H2 : ˛1 = ˛2 = · · · = ˛N

ˇ1 /= ˇ2 /= · · · /= ˇN

F2 = (S2 − S1)/[(N − 1)(K + 1)]
S1/(NT − N(K + 1))

∼F[(N − 1)(k + 1), N(T − K − 1)]

(6)

where F2 is the statistic for H2 that intercepts are variable and
coefficients are constant; F1 is the statistic for H1 that intercepts
and coefficients are held constant over individuals and time. S1, S2
and S3 are RSS for Eqs. (4), (3) and (2). N, T and K represent the
number of observations, the number of periods and the number
of explanatory variables respectively. Given the confidence level
and condition that T > K + 1 (T represents years and K represents the
number of variables), if F1 is greater than or equal to the critical
value, H1 is rejected and H2 is tested; otherwise the pooled regres-
sion model should be used. If F2 is greater than or equal to the
critical value, H2 is rejected and both intercepts and coefficients
are variable; otherwise intercepts are variable and coefficients are
held constant.

Hausman test is further used to decide whether effects are fixed
or random. Assumed that ˇ and ˆ̌ are estimation results of fixed
effect model and random effect model respectively, the variance is
then formulated as:

Var[ˇ − ˆ̌ ] = Var[ˇ] + Var[ ˆ̌ ] − Cov[ˇ, ˆ̌ ] − Cov[ˇ, ˆ̌ ]′ (7)

And:

Cov[(ˇ − ˆ̌ ), ˆ̌ ] = Cov[ˇ, ˆ̌ ] − Var[ ˆ̌ ] = 0 (8)

Thus the covariance should be:

Cov[ˇ, ˆ̌ ] = Var[ ˆ̌ ] (9)

Finally, we get:

Var[ˇ − ˆ̌ ] = Var[ˇ] − Var[ ˆ̌ ] = � (10)

The Hausman test is then based on the Wald statistics formu-
lated as:

W = [ˇ − ˆ̌ ]′� ′[ˇ − ˆ̌ ]∼�2(K − 1) (11)

where K is the degree of freedom. If the value of W is not equal to
zero, the fixed effect model should be used; otherwise the random
effect model should be used.

4. Results and discussion

4.1. Urban forms and landscape changes during 2005–2008

Multi-temporal remote sensing images of the study area during
2005–2008 are classified into six land use classes using Definiens
Developer 7.0. The classification accuracy at each period is shown in
Table 2. The accuracies of built-up areas are over 83% for all images
and hence the quality of input data is ensured for subsequent esti-
mation. The classification results are then converted into binary
images as urban and non-urban (Fig. 2).

Urban forms of the five cities are quantified based on
the selected landscape metrics, namely CA, NP, LPI, ENN MN
and PARA MN. These metrics are computed using FRAGSTATS
(McGarigal, Cushman, Neel, & Ene, 2002), a spatial pattern analysis
program for quantifying landscape structure. Fig. 3(a)–(e) shows
the computation results of the selected metrics for the five cities
during 2005–2008.

It can be seen from Fig. 3(a) that the values of CA are rapidly
increasing during the study period. Such fast urbanization process
can be dated back as early as 1980s when market-oriented reform
in China was implemented. Triggered by the fast economic devel-
opment, the urbanization process accelerates in a high rate. For
example, the average annual rate of urban land use growth was
as high as 17% during 1988–1999 (Seto & Fragkias, 2005); and
nearly 9% during 1998–2003 (Fan, Wang, & Wang, 2008). The com-
putation results of CA in this study suggest that the urbanization
process is still accelerating during 2005–2008 (Fig. 3(a)). The sum of
urbanized area of the five cities is 2894.09 km2 in 2005, and rapidly
grows into 3742.99 km2 in 2008. The average annual growth rate
during this period is 8.95%, which is very close to the rate during
1998–2003 (Fan et al., 2008).

It is unexpected that Dongguan has the highest value of LPI
instead of Guangzhou, as shown in Fig. 3(b). As the primate city
in this region, Guangzhou was the most densely settled city mea-
sured by Seto and Fragkias (2005). However, in this study the LPI
of Guangzhou is not significantly higher than other cities dur-
ing 2005–2008; this may due to that the analysis of Guangzhou
was based on the restructured administrative divisions. After the
restructure of administrative divisions began in 2000, the total
area of Guangzhou was tremendously enlarged from 1662 km2 to
7263 km2 (http://en.wikipedia.org/wiki/Guangzhou). As a result,
besides the witnessed largest urban patch in the city proper, there
are several other massive urban patches distribute in Huadu and
Panyu (Fig. 2); and thus the value of LPI is not as high as expected.

Fig. 3(c)–(e) shows the computation results of NP, ENN MN
and PARA MN. They are used to reflect three important features
of the urban landscape: composition, average spatial connection
and average shape. NP and ENN MN measure how scattered the
spatial pattern of urban land use is. Higher values of both NP and
ENN MN may suggest a more scattered pattern. While PARA MN
measures the regularity of the shape of urban patches at average
level. If a patch has a high value of PARA MN, the shape of this patch
is irregular; otherwise this patch is regular.

It can be seen that Guangzhou has the highest values of NP and
ENN MN (Fig. 3(c) and (d)). Drivers lead to such scattered urban
land use patterns may include hosting sport games (such as Asian
Games 2010), the booming real estate development in sub-urban
area, the expanded administrative division as well as construction
of large projects such as infrastructure, industrial parks (Su, Wei,
& Guo, 2005). The value of NP is also very high in Foshan. There
is a long tradition of fish pond culture in Foshan; but during the
rapid industrialization process, many fish ponds were filled up for
the construction of new factories or infrastructures. As a result, the
urban land use pattern in Foshan becomes very scattered.

The urban land use patterns are most irregular in Dongguan and
Shenzhen because the values of PARA MN are highest in these two
cities (Fig. 3(e)). Visually, the urban land use patterns are quite
similar in Dongguan and Shenzhen (Fig. 2) that almost all urban
patches are along the major roads. Some researchers believe that
the urban land use patterns in Dongguan and Shenzhen belong to
“Desakota” (“desa” means village and “kota” is town) in McGee-
Ginsburg’s model (McGee, 1991; Sui & Zeng, 2001). “Desakota” is
very common in many fast developing regions in Asia, and one typ-
ical feature of “Desakota” is that urban land use “often stretches
along corridors between large city cores” (Sui & Zeng, 2001). The
formation of such patterns in Dongguan and Shenzhen is due to
their close links to Hong Kong. In the early phase of development
in Dongguan and Shenzhen, the establishment of industries were
mainly supported by investments came from Hong Kong (Li & Yeh,
2004; Seto et al., 2002). Today there are still many Hong Kong-
invested enterprises in Dongguan and Shenzhen. Moreover, both
the import of raw materials and the export of industrial products
need to come through the ports in Hong Kong and Shenzhen; thus
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Fig. 2. Urban growth in the Pearl River Delta (2005–2008).

Fig. 3. Energy consumption and values of landscape metrics.
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Table 2
Accuracies of classification results 2005–2008 (%).

2005 2006 2007 2008

Built-up areas 83.33 86.81 88.39 89.51
Bare soil 82.34 80.00 81.87 83.30
Water 96.67 93.50 94.40 98.13
Farm land 70.01 73.33 76.25 70.55
Forest 86.67 91.00 90.66 89.83
Fishpond 80.79 76.67 77.73 82.12

locations near major roads can provide better accessibility to the
ports for import/export of goods.

4.2. The relationship between urban forms and energy
consumption

The energy consumption of the five cities during 2005–2008 is
approximated using Eq. (1), and the results are shown in Fig. 3(f).
As the biggest city in the PRD, Guangzhou consumes the largest
volume of energy (51.93 million tons of SCE), about 32.79% of total
energy consumed by all of the five cities. While Zhongshan, with
smaller city size and very high energy efficiency in Guangdong
Province, has the minimum energy consumption. The other three
cities, Dongguan, Foshan and Shenzhen, which are characterized by
numerous manufacturing plants and a mass population of migrant
labors, consume 97.63 million tons of SCE, contributing 61.63% of
total energy consumption of the study area.

The approximated energy consumption is then served as depen-
dent variables to estimate its relationship with urban land use
patterns. The hypothesis is that the larger the city size, the more
energy is needed; but given the same size, cities with different
land use patterns may have different energy consumption. The
estimation is accomplished using panel data analysis. The obser-
vation units are cities. The estimation is based on the data of the
five cities during 2005–2008, thus there are twenty observations.
Given the condition that T > K + 1, here T = 4, the maximum value of
K is 2. This means there are at most two explanatory variables in a
regression model. In this study five landscape metrics are selected
to reflect different aspects of urban land use patterns. Thus they
have to be divided into several combinations and estimated sep-
arately. The combination of landscape metrics is chosen based on
the correlation analysis. The Pearson’s correlation coefficients are
computed for five landscape metrics and all combinations of non-
correlated metrics are used to establish the models. The result of
correlation analysis is shown in Table 3. It can be seen that several
pairs of metrics, such as CA and NP, NP and ENN MN, PARA MN
and ENN MN are highly correlated. There are five combinations of
non-correlated metrics, i.e. (1) CA and LPI; (2) CA and ENN MN; (3)
CA and PARA MN; (4) LPI and NP; (5) LPI and ENN MN. Therefore,
five models are established according to these five combinations of
metrics.

The F-tests are first operated to decide the regression form for
these five models. F1 and F2 are calculated according to Eqs. (5) and
(6). The results are shown in Table 4. For Model 1, F1 (1492.56) is
greater than F(12,5), and hence the hypothesis of constant inter-
cepts and coefficients is rejected. While F2 (68.41) is less than F(8,
5), and hence the hypothesis of variable intercepts and constant
coefficients is accepted. Therefore, Eq. (3) should be adopted for
Model 1. The F-test results for the other four models are similar to
those of Model 1, thus Eq. (3) was used for estimation.

The Hausman test is then implemented to determine whether
fixed or random effects should be adopted (Eq. (11)). Table 5 shows
the results of the Hausman test for the five models. The values of
W for Models 1–5 are all greater than zero. Therefore, we used the
fixed effect model for estimation. The estimation was performed

using generalized least squares (GLS) and the results are shown in
Table 6.

The estimated coefficients demonstrate a significant relation-
ship between urban land use patterns and energy consumption. As
shown in Table 6, CA, NP, ENN MN and PARA MN are positively cor-
related with energy consumption; LPI is negatively correlated with
energy consumption (coefficients of LPI are positive in Models 4
and 5, but they are not significant).

The positive correlation between the urban size and energy
consumption can be explained from three aspects: economic devel-
opment, population growth, and urban transportation. Economic
development is recognized as the leading driver of urban growth in
PRD by many researchers (Fan et al., 2008; Seto & Kaufmann, 2003).
The input of large amount of land resources contributes the take-
off of regional economy. During last twenty years, a lot of farm land
was converted into to infrastructure, real property or industrial
uses. Manufacturing industries, especially the processing indus-
tries, which are characterized as labor-intensive and low energy
efficiency (even lower than other developed areas like the Yangtze
River Delta in China (Fang et al., 2009)), used to be the predom-
inant sector in regional economy. Observed from the Guangdong
Statistical Year Book 2009, 66.64% of total energy was consumed
by the secondary industry in Guangdong in 2008. We cannot find
such data at city level so far, but given that the five cities playing
the most critical role in the province’s economy, it is very likely that
the proportion of energy consumption by the secondary industry
is higher than 66.64%. Recently the secondary industry is still very
important to the regional economy. The average proportion of the
secondary industry for the five cities is still near 50% (Table 1);
and it is even over 60% in Foshan and Zhonshan. Therefore, the
growth of regional economy (especially the secondary industry)
should be the most important factor to the increase of energy
consumption.

The increasing population, which is also the driver of urbaniza-
tion (Fan et al., 2008), should be another reason of growing energy
consumption. Daily living, commuting, working and traveling of
the population create a large demand for energy. Moreover, the
annual energy consumption per capita is increasing during the past
decade. It was only 148.90 kg of SCE in 2000; and rapidly increased
into 285.76 kg of SCE in 2008, almost double times. This could be
the result of economic development, which leads to the growth
of personal wealth. One typical example is the fast growing num-
ber of private cars, as shown in Table 1. “If people own a car, they
use it” (Dieleman et al., 2002). The increasing possession of private
cars significantly change the patterns of residents’ daily activities
(Zhou, Yang, & Deng, 2010), and at the same time raises some prob-
lems in urban transportation. As reported by Zhou and Liu (2010),
the increasing traffic demand and the mismatch of jobs-housing
are the major factors of the serious traffic jam in Guangzhou. Thus,
urban energy consumption in transportation sector is expected to
increase in the future, because on the one hand the number of
vehicles is persistently increasing that demands more energy, on
the other hand urban transportation systems cannot fully adapt to
such change of traffic demand and hence may reduce the energy
efficiency.
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Table 3
Pearson’s correlation coefficients of the spatial metrics.

CA LPI NP ENN MN PARA MN

CA 1
LPI 0.324 1
NP 0.725** −0.265 1
ENN MN 0.265 −0.439 0.476* 1
PARA MN 0.103 −0.777** −0.508* 0.583** 1

Note: CA, LPI, NP, ENN MN and PARA MN are landscape metrics, representing total urban class area (km2), largest patch index (%), number of urban patches, mean Euclidean
nearest neighbor distance (m) and mean perimeter-area ratio respectively.

* Significant at 0.05.
** Significant at 0.01.

Table 4
F-test results for Models 1–5.

F-test Model 1 Model 2 Model 3 Model 4 Model 5

Constant intercepts and coefficients F(12,5) < 1492.56 F(12,5) < 2057.29 F(12,5) < 5968.71 F(12,5) < 51.47 F(12,5) < 121.67
(0.000) (0.000) (0.000) (0.01) (0.01)

Variable intercepts and constant coefficients F(8, 5) > 68.41 F(8,5) > 59.55 F(8,5) > 188.07 F(8,5) > 2.12 F(8,5) > 5.00
(0.000) (0.000) (0.000) (0.01) (0.01)

Notes: The combinations of metrics in these five models are: CA and LPI (Model 1); CA and ENN MN (Model 2); CA and PARA MN (Model 3); LPI and NP (Model 4); LPI and
ENN MN (Model 5).

Table 5
Hausman test results for Models 1–5.

Model 1 Model 2 Model 3 Model 4 Model 5

ˇ ˆ̌ ˇ ˆ̌ � ˆ̌ ˇ ˆ̌ ˇ ˆ̌

CA 0.422 0.044 0.476 0.049 0.042 0.045
LPI 0.108 0.037 0.306 0.363 0.433 0.370
NP −0.067 0.004
ENN MN 0.014 0.021 −0.050 −0.019
PARA MN −0.0023 −0.0184
COV −0.008 0.041 0.106 −0.727 −0.759
W 57.99 70.11 69.56 2.93 3.07

Notes: CA, LPI, NP, ENN MN and PARA MN are landscape metrics, representing total urban class area (km2), largest patch index (%), number of urban patches, mean Euclidean
nearest neighbor distance (m) and mean perimeter-area ratio respectively.

One interesting finding from the empirical analysis in this study
is the correlation between increasing fragmentation/irregularity of
patterns and growing energy consumption. The explanation of pos-
itive correlation between fragmentation and energy consumption
may be that (1) the potential traffic demand increases when activ-
ities are distributed in many different urban patches (high NP);
and (2) if the spatial connection between patches is weak (high
ENN MN), probably more energy would be spent because the trav-
eling distance increases. For instance, many newly built residential

areas in Guangzhou are within two important sub-centers of the
city, namely Panyu and Huadu (Fig. 2), which are distant from the
city proper. However, the construction of facilities there is lagged
behind. The residents have to commute long distance between the
city proper and where they live. The study presented by Yeh and Li
(2001) provide another example. They conducted several scenario
simulation of urban development in Dongguan based on ‘grey-cell’
CA model. They found that compared with compact development,
the infrastructure costs, such as electricity and gas, were about

Table 6
Coefficients estimated from panel data analysis.

Model 1 Model 2 Model 3 Model 4 Model 5

CA 0.0798*** 0.0460*** 0.0203***

(13.29) (10.14) (9.48)
LPI −0.8025*** 0.0401 0.0515

(−5.49) (0.24) (0.3)
NP 0.1157***

(4.16)
ENN MN 0.0783*** 0.0591**

(7.27) (2.1)
PARA MN 0.0098*

(1.74)
Constant 10.9677*** −40.2698*** −6.0507 −4.8334 −2.2893

(2.96) (−7.69) (−6.37)*** (−0.55) (−0.14)

Notes: CA, LPI, NP, ENN MN and PARA MN are landscape metrics, representing total urban class area (km2), largest patch index (%), number of urban patches, mean Euclidean
nearest neighbor distance (m) and mean perimeter-area ratio respectively.

* Significant at 0.10.
** Significant at 0.05.

*** Significant at 0.01.
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24% for the dispersed development in Dongguan; and the dispersed
development also costs more in transport maintenance and energy
consumption.

The irregularity of urban land use patterns is also positively
correlated with energy consumption. As mentioned in Section 4.1,
highly irregular patterns are observed in Dongguan and Shenzhen
(Figs. 2 and 3(e)). Such patterns were also witnessed in other fast
industrializing regions in Asia (McGee, 1991; Xie et al., 2006).
Therefore the explanation of positive correlation between irreg-
ularity and energy consumption perhaps lies in the process of
fast industrialization in Dongguan and Shenzhen, or the so-called
“urbanization from below” (Shen, Wong, & Feng, 2002), which
refers to the rapid, unplanned and spontaneous development of
towns. During this process, the governments were so eager to
attract investments and promote the local economy. They loosened
their control and management on land use development. As a result,
many factories and plants were built-up for economic interests but
regardless about their environmental impacts, not to mention their
low energy efficiency (Fang et al., 2009). Recently the secondary
industry is still a very important sector in Dongguan (Table 1).
However, the energy consumption per unit growth of industrial
production was 0.82 t. of SCE/104 yuan in Dongguan in 2008, even
higher than that of Foshan (0.58 t. of SCE/104 yuan) (Guangdong
Statistical Year Book 2009). The energy efficiency of Dongguan thus
needs further improvement. One possible way is to gradually sub-
stitute industries of low energy consumption for those of intensive
energy consumption.

The negative correlation between LPI and energy consumption
may in some degree support the viewpoint of compact develop-
ment (Jenks & Burgess, 2000). Generally, the range and number of
functions of an urban patch are related to its size. The larger an
urban patch is, the more functions it can provide. The estimation
result suggests that the distribution of urban functions should be
concentrated rather than decentralized. The compact development
may have lower interzonal interactions (Yeh & Li, 2001) and thus
can reduce more energy consumption. However, the implication
from the negative correlation between LPI and energy consump-
tion should not be overstated since the limitation of the metric LPI
is also apparent. LPI only consider the size of a patch and cannot
address the heterogeneity within a patch, such the distribution of
population. Therefore, even though the LPI of Dongguan is higher
than Guangzhou (Fig. 3(b)), it is problematic to say the development
of Dongguan is more compact than that of Guangzhou. Neverthe-
less, the LPI is still used in this study for analysis since it is difficult
to find another metric that can describe the compactness of a city
at patch level.

5. Conclusion

With the advances in remote sensing and geographical infor-
mation systems (GIS), the quantification of urban forms has been
significantly improved by many new methods, such as landscape
metrics (Herold et al., 2005). Compared with the progress in
quantification of urban forms, the impacts of urban forms on envi-
ronment and ecosystem are not yet fully understood (Fragkias &
Seto, 2009). This study presents an empirical analysis on this realm
from the perspectives of the relationship between urban forms
and energy consumption. We select five rapidly growing cities in
the Pearl River Delta as the case study area, namely Dongguan,
Foshan, Guangzhou, Shenzhen and Zhongshan. The rapid urban-
ization and fast changing urban landscapes in the PRD have been
reported by many authors based on GIS and remote sensing (Fan
et al., 2008; Li & Yeh, 2004; Seto et al., 2002). In this study we try
to link the characteristics of urban landscapes with urban energy
consumption.

The urban land use patterns in the study area during 2005–2008
were obtained through classification of remote sensing images. Five
selected landscape metrics were then used to quantify the urban
land use patterns. The panel data analysis was implemented to
estimate the relationship between urban land use patterns and
energy consumption. In brief, there are three major findings from
the analysis: (1) urban size is positively correlated with energy
consumption. The increase of urban size in the PRD relates to the
phenomena of economic development, population growth (Fan
et al., 2008; Seto & Kaufmann, 2003), and increasing traffic demand
(Zhou et al., 2010). All of these are probable factors to stimu-
late the energy consumption of PRD. (2) Fragmentation of urban
land use patterns is positively correlated with energy consumption.
The fragmented pattern of urban land use may cause the increase
of traveling distance, which was confirmed by other researchers
(Yeh & Li, 2001). The irregularity of urban land use patterns is
also positively correlated with energy consumption. Perhaps this
correlation relates to the formation of the irregular patterns. The
critical driver is the fast industrialization, which brought many
industries that are labor-intensive and low energy efficiency. (3)
The dominance of the largest urban patch is negatively correlated
with energy consumption. Such result may support the viewpoint
of compact development in PRD, as suggested by Jenks and Burgess
(2000).

In fact, this paper only presented the results of the first stage
in our study about the relationship between urban forms and
energy consumption. There are several limitations that should be
acknowledged regarding present study. For example, the mecha-
nism behind the empirical results is still not fully clear and needs
thorough examination in future study. This is mainly caused by the
limited data availability, i.e. the urban land use data and energy
consumption data. The spatial distribution of industrial, residen-
tial or commercial uses is important in analyzing the relationship
between urban forms and energy consumption. However, it is
almost impossible to identify such land uses in Landsat TM images
with a resolution of 30 m. Therefore, we have to assume that there
are not too much variations of spatial distribution of these different
land use patterns between these five cities. Another limitation is in
the data of urban energy consumption. To the best of our knowl-
edge, there is very few data about urban energy consumption for
most of the cities in PRD until 2005. Even at present the energy data
at city level are still quite limited. Data such as the detailed com-
position (transportation, office/commercial building, household) of
energy consumption is not fully available.

We hope we can find more data in future study so that ques-
tions like “How such urban land use patterns evolve? Why and in
what ways such urban land use patterns can influence the energy
consumption?” can be addressed much better. Besides, other meth-
ods or techniques may also be considered in future study. The
panel data analysis is capable of capturing strength of relation-
ship between explanatory variables and the dependent variable;
but cannot directly guarantee the causation among them. Perhaps
the simulation methods are a considerable option (Li & Yeh, 2000).
Based on the simulation methods, experiments can be carried out
and replicated in a standard platform to investigate non-linear
and self-organizing dynamics of complex systems (such as cities)
(Wu, 1999). Therefore, the simulation methods may be adopted to
address the interactions between changing urban forms and energy
consumption in next stage of our study.
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